3.3.44 \(\int \frac {x \text {ArcTan}(a x)}{(c+a^2 c x^2)^{5/2}} \, dx\) [244]

Optimal. Leaf size=79 \[ \frac {x}{9 a c \left (c+a^2 c x^2\right )^{3/2}}+\frac {2 x}{9 a c^2 \sqrt {c+a^2 c x^2}}-\frac {\text {ArcTan}(a x)}{3 a^2 c \left (c+a^2 c x^2\right )^{3/2}} \]

[Out]

1/9*x/a/c/(a^2*c*x^2+c)^(3/2)-1/3*arctan(a*x)/a^2/c/(a^2*c*x^2+c)^(3/2)+2/9*x/a/c^2/(a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {5050, 198, 197} \begin {gather*} -\frac {\text {ArcTan}(a x)}{3 a^2 c \left (a^2 c x^2+c\right )^{3/2}}+\frac {2 x}{9 a c^2 \sqrt {a^2 c x^2+c}}+\frac {x}{9 a c \left (a^2 c x^2+c\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*ArcTan[a*x])/(c + a^2*c*x^2)^(5/2),x]

[Out]

x/(9*a*c*(c + a^2*c*x^2)^(3/2)) + (2*x)/(9*a*c^2*Sqrt[c + a^2*c*x^2]) - ArcTan[a*x]/(3*a^2*c*(c + a^2*c*x^2)^(
3/2))

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 198

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p +
 1], 0] && NeQ[p, -1]

Rule 5050

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^(
q + 1)*((a + b*ArcTan[c*x])^p/(2*e*(q + 1))), x] - Dist[b*(p/(2*c*(q + 1))), Int[(d + e*x^2)^q*(a + b*ArcTan[c
*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]

Rubi steps

\begin {align*} \int \frac {x \tan ^{-1}(a x)}{\left (c+a^2 c x^2\right )^{5/2}} \, dx &=-\frac {\tan ^{-1}(a x)}{3 a^2 c \left (c+a^2 c x^2\right )^{3/2}}+\frac {\int \frac {1}{\left (c+a^2 c x^2\right )^{5/2}} \, dx}{3 a}\\ &=\frac {x}{9 a c \left (c+a^2 c x^2\right )^{3/2}}-\frac {\tan ^{-1}(a x)}{3 a^2 c \left (c+a^2 c x^2\right )^{3/2}}+\frac {2 \int \frac {1}{\left (c+a^2 c x^2\right )^{3/2}} \, dx}{9 a c}\\ &=\frac {x}{9 a c \left (c+a^2 c x^2\right )^{3/2}}+\frac {2 x}{9 a c^2 \sqrt {c+a^2 c x^2}}-\frac {\tan ^{-1}(a x)}{3 a^2 c \left (c+a^2 c x^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 51, normalized size = 0.65 \begin {gather*} \frac {\sqrt {c+a^2 c x^2} \left (3 a x+2 a^3 x^3-3 \text {ArcTan}(a x)\right )}{9 c^3 \left (a+a^3 x^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*ArcTan[a*x])/(c + a^2*c*x^2)^(5/2),x]

[Out]

(Sqrt[c + a^2*c*x^2]*(3*a*x + 2*a^3*x^3 - 3*ArcTan[a*x]))/(9*c^3*(a + a^3*x^2)^2)

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.40, size = 244, normalized size = 3.09

method result size
default \(\frac {\left (3 \arctan \left (a x \right )+i\right ) \left (i a^{3} x^{3}+3 a^{2} x^{2}-3 i a x -1\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{72 \left (a^{2} x^{2}+1\right )^{2} a^{2} c^{3}}-\frac {\left (\arctan \left (a x \right )+i\right ) \left (i a x +1\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{8 c^{3} a^{2} \left (a^{2} x^{2}+1\right )}+\frac {\sqrt {c \left (a x -i\right ) \left (a x +i\right )}\, \left (i a x -1\right ) \left (\arctan \left (a x \right )-i\right )}{8 c^{3} a^{2} \left (a^{2} x^{2}+1\right )}-\frac {\sqrt {c \left (a x -i\right ) \left (a x +i\right )}\, \left (i a^{3} x^{3}-3 a^{2} x^{2}-3 i a x +1\right ) \left (-i+3 \arctan \left (a x \right )\right )}{72 c^{3} a^{2} \left (a^{4} x^{4}+2 a^{2} x^{2}+1\right )}\) \(244\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arctan(a*x)/(a^2*c*x^2+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/72*(3*arctan(a*x)+I)*(I*a^3*x^3+3*a^2*x^2-3*I*a*x-1)*(c*(a*x-I)*(I+a*x))^(1/2)/(a^2*x^2+1)^2/a^2/c^3-1/8*(ar
ctan(a*x)+I)*(1+I*a*x)*(c*(a*x-I)*(I+a*x))^(1/2)/c^3/a^2/(a^2*x^2+1)+1/8*(c*(a*x-I)*(I+a*x))^(1/2)*(I*a*x-1)*(
arctan(a*x)-I)/c^3/a^2/(a^2*x^2+1)-1/72*(c*(a*x-I)*(I+a*x))^(1/2)*(I*a^3*x^3-3*a^2*x^2-3*I*a*x+1)*(-I+3*arctan
(a*x))/c^3/a^2/(a^4*x^4+2*a^2*x^2+1)

________________________________________________________________________________________

Maxima [A]
time = 0.33, size = 66, normalized size = 0.84 \begin {gather*} \frac {{\left (2 \, a^{3} x^{3} + 3 \, a x - 3 \, \arctan \left (a x\right )\right )} \sqrt {a^{2} x^{2} + 1} \sqrt {c}}{9 \, {\left (a^{6} c^{3} x^{4} + 2 \, a^{4} c^{3} x^{2} + a^{2} c^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)/(a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

1/9*(2*a^3*x^3 + 3*a*x - 3*arctan(a*x))*sqrt(a^2*x^2 + 1)*sqrt(c)/(a^6*c^3*x^4 + 2*a^4*c^3*x^2 + a^2*c^3)

________________________________________________________________________________________

Fricas [A]
time = 2.29, size = 64, normalized size = 0.81 \begin {gather*} \frac {{\left (2 \, a^{3} x^{3} + 3 \, a x - 3 \, \arctan \left (a x\right )\right )} \sqrt {a^{2} c x^{2} + c}}{9 \, {\left (a^{6} c^{3} x^{4} + 2 \, a^{4} c^{3} x^{2} + a^{2} c^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)/(a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

1/9*(2*a^3*x^3 + 3*a*x - 3*arctan(a*x))*sqrt(a^2*c*x^2 + c)/(a^6*c^3*x^4 + 2*a^4*c^3*x^2 + a^2*c^3)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*atan(a*x)/(a**2*c*x**2+c)**(5/2),x)

[Out]

Exception raised: TypeError >> Invalid comparison of non-real zoo

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)/(a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\mathrm {atan}\left (a\,x\right )}{{\left (c\,a^2\,x^2+c\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*atan(a*x))/(c + a^2*c*x^2)^(5/2),x)

[Out]

int((x*atan(a*x))/(c + a^2*c*x^2)^(5/2), x)

________________________________________________________________________________________